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Abstract-A general expression for entropy generation in counter-current heat exchangers is developed. It 
is applicable to incompressible liquids and perfect gases. Two new entropy generation numbers are defined, 
NM and No. The analysis is applied to an air-air counter-current heat exchanger. The three entropy 
generation numbers, Ns, NM and No, have a different variation with NTU at the various values of the 

capacity flow rate ratio employed in the calculations. 

1. INTRODUCTION 

EVALUATION of irreversibilities in heat exchanger 
design has become generally accepted since the work 
of Bejan [l]. The initial limitations of the analysis, 
nearly ideal and nearly balanced capacity flow rate 
heat exchangers, allowed the determination of a mini- 
mum in the entropy generation number N,, defined 
as Ns = AS/C,,,,,. 

A different definition of Ns [2], Ns = AS/C,,,., made 
possible the appearance of a maximum in an irre- 
versibility function not including friction losses. 

Further studies on compact crossflow heat ex- 
changers [3] and on regenerators of gas turbines [4] 
were mainly concerned with the optimization through 
the choice of the minimum entropy production. 

This paper deals with : 

(a) developing a general expression of the entropy 
generation ; 

(b) defining two new entropy generation numbers; 
(c) investigating the relative position of both the 

maximum and minimum in the entropy generation 
numbers. 

2. ENTROPY GENERATION 

For the heat exchanger of Fig. 1 the entropy gen- 
eration rate is given by 

dS = m, ds, +m2 ds, (1) 

where the heat transfer to the environment is 
neglected. 

Expressing the entropy variation in a general way 

PI 

ds = Cp dT/T- (c%/aT), dp (2) 

the integration between inlet and outlet gives 

AS=m, 
1 

c,,ln(T,IT,), - 
s 

o(ar@T)i,~dpi 
1 

+ml cp21n(TOlT,), - ‘(ariaT),,dR, (3) 

with the assumption that cp, and cp2 are averaged 
between Ti and To for each stream. For a liquid it is 
assumed that 

(aqaq, = pv = const. (4) 

while for a perfect gas 

o 
s 

(av/aq, dp = 
I 
.‘RlRdR= Rln(&lRi) 

= Rln(l+Ap/pi) (5) 

with the hypothesis Ap/pi cc 1 one gets 

I 
o (av/aT),dp = Rln(l+Ap/p,) = (R/p,)Ap. (6) 

In general it is possible to express 

0 

s 
(av/ar), dp = IAp (7) 

where 

I = /?v (8) 

for a liquid, and 

I = R/p, (9) 

for a perfect gas. 
With the introduction of the efficiency E [6], as 

e = Ci (Toi - ci )/]Ci (Ti2 - T,i >I 

= C,(~~-T,,)/[C,(~,-T,,)l (10) 

where 

Ci = C,,, = c,imi, C2 = C,,, = cp2m2 (11) 

FIG. 1. Heat exchanger. 
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NOMENCLATURE 

A heat exchanger surface 
B stream section 
c heat capacity flow rate 

CP specific heat 

f” 

equivalent diameter 
friction factor 

k thermal conductivity 
h convective heat transfer 
L heat exchanger length 
m mass flow rate 
NM, No, Ns entropy generation numbers 
NTU number of transfer units 
NU Nusselt number, hD,/k 

P pressure 
Pr Prandtl number, pc,/k 
r temperature ratio 
R constant of gas 
Re Reynolds number, WD,/v 

Q heat transferred in the exchanger 
s entropy rate 

s specific entropy 
T temperature 
V specific volume 
z capacity flow rate ratio. 

Greek symbols 

B volumetric expansion coefficient 
A variation 
E efficiency 

p dynamic viscosity 
V kinematic viscosity 

P density. 

Subscripts 

192 streams 
i inlet 
max maximum 
min minimum 
0 outlet 

Q relative to the heat exchanger. 

and 

r=TJT,; z=C,/C2 

equation (3) becomes 

AS= C,(ln[1+~(r-l)]+1/zln[1-~z(r-l)/r] 

-~,API /cp, -M~pzl(zc,z)). (12) 

With a modification of the logarithmic expression 
and using the entropy generation number as in ref. 
[2], one has 

N, = AS/C,,, = Nsp + Nsz + N,, (13) 

where 

NSF = -~,A~,lc,, -4A~p2Kzcpd (14) 

Nsz = lnr+l/zIn[l-z(r-1)/r] (15) 

N,, = ln[l-(r-1)(1-&)/r] 

+l/zln{l+[z(r-l)(l-.a)/r]/[l-z(r-1)/r]}. (16) 

It can be noted that NsZ becomes zero for z = 1 
and/or r = 1 while N,, is zero for E = 1 and/or r = 1. 
Further on, Nse has a maximum for E = l/(z+ l), as 
found in ref. [2]. 

Neglecting the concentrated pressure losses and 
expressing the distributed ones as 

Ap = 2f Re2 v’Lp/D: (17) 

it is possible to write 

Nsp = 2tf, Re?viL,~,l,/(DZ,c,,) 

+fi ReZ v2L2p2~2/W&dl. (18) 

The entropy generation number proposed by 

Sarangi and Chowdhury [2], N,, can be interpreted 
as the entropy production related to the heat trans- 
ferred for one degree of temperature difference. We 
can obtain other significant parameters comparing 
entropy production to the greatest amount of pro- 
ducible entropy. 

The total entropy generation, equation (12), can be 
related to the following entropy production : 

As, = Q(l/Tl- l/T,) (19) 

giving 

N, = AS/AS, = (N,/E)[r/(r- 1)2]. (20) 

The term AS, can be interpreted as the entropy 
generated if the heat transferred in the heat exchanger 
is exchanged between the inlet temperature of the two 
streams. 

A maximum entropy generation can be defined by 

AS,,, = QUiTI - 1/T,2)+m,Asl,,,,+m2~2,m,, 
(21) 

where As,,,,, is due to the free expansion of the fluid 
from the inlet pressure to zero. For a liquid 

A&,X = lApi (22) 

for a perfect gas the expansion can be carried on from 
the inlet pressure only to a very low pressure, p,, 

Asmax = Rlnb/po). (23) 

Then, the entropy generation number NM can be 
introduced as 

N, = AS/AS,,,,, = AS/[Q(l/T, - l/T21 

+mlA~~,max+m2A~2,maxl. (24) 
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3. APPLICATION TO AN AIR-AIR 

COUNTER-CURRENT HEAT EXCHANGER 

For the heat exchanger of Fig. 2 the efficiency E is 
given by [6] 

E= {l-exp[-NTU(l-z)]}/ 

{l-zexp[-NTU(l-z)]} (25) 

where, neglecting the heat conduction in the wall 

l/NTU= B,/(A,St,)+zB,/(A,St,). (26) 

According to equation (25), the maximum of N,, 
for E = l/(z+ 1) gives a maximum for NTU = 
In { l/[z( 1 -z)]}. The following relations are assumed 
valid for each stream [7] : 

Nu = 0.02353 Re’.’ Pro.33 (27) 

with 

R = 1 +(De/L)‘.’ if L/D, < 20 (28) 

and a= 1 for L/D, > 20 

f = 0.079Re-0~25 for Re > 2200 (29) 

and 

f = 16/Re if Re < 2200. (30) 

The data of ref. [8] for air are interpolated with the 
least squares method by the following expressions : 

cp = 1013.3578-0.1645T 

+5.0824 x 10-4TZ-2.156x lo-‘T3 (31) 

p = (3.9416+0.0521T- 1.6449 x 10-5T2 

+2.782x 10-9T3) x 1O-6 (32) 

k = 1.898 x 1O-3 +8.9614 x lo-‘T 

-3.7318 x lo-*T*+9.9215 x lo-“T3 (33) 

p = 2.6896-7.1084x 10-3T 

+7.4569 x 10-6T2-2.6636 x 10-9T3 (34) 

where the units are in S.I. and Tin Kelvin. 
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FIG. 2. Air-air counter-current heat exchanger. 

The following calculations are obtained for a 
heat exchanger with surface A = 1 m*, length L = 
1 m, mass flow rate of air m, = 1 x 10m4 kg s-l, T, = 
300 K. 

The components of N,, as given in equation (13) 
are reported in Fig. 3 vs NTU, for z = 0.999 and 0.01. 
It can be noted that Nsz is in general constant 
for fixed z and r and negligible for z = 0.999. On the 
other side, z = 0.999, N,, has a maximum for 
NTU = ln[l/{z(l -z)}] and decreases with the 
increase in NTU. The contribution of NsP, low at low 
NTU, increases with NTU. The resulting trend of Ns 
is different whether NTUis low or high. For low NTU, 
NS presents a maximum which coincides with that of 
N,,, for greater NTU the contribution of Nsp is larger 
and for very large NTU the value of N, is mainly given 

by NW 
At intermediate NTU a minimum of N, is observ- 

able which is qualitatively comparable with that of 
ref. [l] for a simplified case. The values of N, for 
z = 0.01 are greater than for z = 0.999. 

Figure 4 presents the three-dimensional graph of Ns 
vs NTU and z. The maximum and minimum are less 
pronounced as far as z is decreased and for z = 0.01 
they disappear. Further on, N, increases with the 
decrease of z and for z = 0.01 it reaches a maximum 
value. 

The number N,,, is presented in Figs. 5 and 6 in 
similar two- and three-dimensional graphs. The trend 

r-3 

_ij 

0 16 26 36 46 56 66 76 66 

FIG. 3. N, vs NTU. 
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of Fig. 5 is similar to that of Fig. 4 with the presence 
of both a maximum and minimum at high z values 
and their disappearance at low z. The new result of 
the calculations is the lower values of NM for z = 0.01 
up to NTU cz 20. This conclusion seems to be due to 

the presence of m2 in the denominator of equation 

(24). 
The three-dimensional graph of NM, Fig. 6, displays 

a very different picture than Fig. 4. The two numbers, 
N, and NM, have a similar trend up to about z = 0.5 

while at low z values their trend is different. For NTU 
lower than 20, N,,, decreases and it attains a minimum 
value at z = 0.01. When NTU is higher than 20 the 
minimum of NM is obtained for z = 0.999. 

The number Np is finally presented in Figs. 7 and 
8 vs NTU. No relative maximum is observed either at 
z = 0.999 or 0.01. The relative minimum of NQ at 
z = 0.999 is found at an NTU value comparable to 
that of N, and NM. At z = 0.01, NQ presents a mini- 
mum and the values of No are always higher than 

.1 1 la NTU 108 300 

FIG. 4. Three-dimensional graph of NS. 
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FIG. 5. NM vs NTU. 
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FIG. 6. Three-dimensional graph of NM. 
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FIG. 7. Np vs NTU. 
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FIG. 8. Three-dimensional graph of N,. 
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FIG. 9. arc-dimensional graph of N,, r = 1. I. 

FIG. 10. Three-dimensional graph of NM, r = I. 1. 

those calculated at z = 0.999. The three-dimensional 
variation of NQ is reported in Fig. 8. The trend of Np 
is to increase regularly from 2 = 0.999 to 0.01. 

Figures 9-l 1 present the three entropy generation 
numbers, N,, NM and NQ at r = 1.1. The relative mini- 
mum of the numbers at z = 0.999 is found for 
NTU zs 12. The graphs are qualitatively similar to 
those obtained at r = 3, similar graphs can be 
obtained also for r < 1. 

4. CONCLUSIONS 

Entropy production for heat exchangers has been 
derived in a general way. The analysis includes incom- 
pressible Auids and perfect gases. Three entropy pro- 
duction numbers have been investigated N,, NM and 
N, ; two of them (NM and NQ) newly defined. The 
application of the anaIysis to an air-air counter- 
current heat exchanger has shown the following 
conclusions : 
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1 ” NTU 100 

FIG. Il. Three-dimensional graph of N,, r = 1.1. 

(a) N, and N, vs NTU have a maximum and mini- 
mum at z = 0.999 and no relative extremes at 
z = 0.01; 

(b) Ns increases as z decreases ; 
(c) N,,,, has a relative maximum as a function of z; 
(d) No vs NTU does not present any maximum but 

only a minimum in the whole range of z; 
(e) N, values increase as z is decreased. 

Then No might be utilized as an optimization cri- 
terion for heat exchanger design, taking into account 
entropy generation. 
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PARAMETRES LIES A L’ENTROPIE POUR LA CONCEPTION DES ECHANGEURS DE 
CHALEUR 

R&sum-n developpe une expression g&n&ale pour la creation d’entropie dans les echangeurs de chaleur 
a contre-courant. Elle est applicable aux liquides incompressibles et aux gaz parfaits. On definit deux 
nouveaux nombres de creation d’entropie NM et Nc. L’analyse est appliqde a un Cchangeur air-air a 
contre-courant. Les trois nombres Ns, NM et Nc ont des variations differentes en fonction du NTU pour 

les valeurs des debits calorifiques consider&s dans les calculs. 

ENTROPIE-PARAMETER FUR DIE AUSLEGUNG VON WARMEUBERTRAGERN 

Zusammenfaasung-Es wird eine allgemeine Beziehung fur die Entropieerzeugung in Gegenstrom- 
Warmefibertragern entwickelt. Diese ist fur inkompressible Fliissigkeiten und fur ideale Gase anwend- 
bar. Zwei neue Kennzahlen der Entropieerzeugung, NM und N,, werden definiert. Die Berechnung 
wird auf einen Luft-Luft-Gegenstrom-Warmeiibertrager angewandt. Die drei Kennzahlen der Entropie- 
Erzeugung, Ns, NM und Nc verlndern sich unterschiedlich mit NTU, abhangig vom Verhaltnis der 

W&mekapazitltsstrime. 
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lUPAMETPb1 3HTPOlTMH ,@Ul PAC’4ETA TEl-IJIOOPMEHHHKA 

hmomms--%me~eHo 06wee BbIparceeee mn npoH3BoncrBa 31i~pormi B II~OTHBOTO%&IX Tennoo6- 
MeHHHKaX. OHO IIpHMeHKeTC5l AJIK CnyqaeB HeGKHMaeMbIX XSiAKOCTek H IiAeaJlbHblX ra30B. HaiiAeHbI 

ABa HOBbIX WiCJla IlpOU3BOACTBa WTpOlIUH, N, H N,. AHaJDi3HpyeTCK I'I~OTHBOTOVH~I~? Tennoo6MeH- 

HHK, B KOTOpOM B Ka’iWTBe 060~~ Ta3OB HCIlOnb3yeTCK B03AyX. TpLi YHCna IIpOH3BOACTBa 3HTpOIlH&i, 

N,, N, H N,, 3aBHCKT pa3nmHbIM o6pa3oM OT KOnHwcrBa emH&iu nepeHoca npH pasnereblx Benww- 

Hax 0THomemn pacxona Tennoeoii Mouuioc~~,ncnonb3yeMb1xnpH pacvelax. 


